Multiresolution
Definition
En sekvens af lukkede vektor underrum af L 2 ( R ) er en multiresolution tilnærmelse, hvis den opfylder følgende fem egenskaber:
(Vj)j∈Z{\ displaystyle (V_ {j}) _ {j \ in \ mathbb {Z}}}
- ∀j∈ZVj+1⊂Vj{\ displaystyle \ forall j \ in \ mathbb {Z} \ quad V_ {j + 1} \ subset V_ {j}}

- ⋃j∈ZVj¯=L2(R) og ⋂j∈ZVj={0}{\ displaystyle {\ overline {\ bigcup _ {j \ in \ mathbb {Z}} V_ {j}}} = L ^ {2} (\ mathbb {R}) {\ text {and}} \ bigcap _ { j \ in \ mathbb {Z}} V_ {j} = \ {0 \}}

- ∀j∈Zf∈Vj⟺f(2⋅)∈Vj+1{\ displaystyle \ forall j \ in \ mathbb {Z} \ quad f \ in V_ {j} \ iff f (2 \ cdot) \ in V_ {j + 1}}

- ∀(j,k)∈Z2f∈Vj⟺f(⋅-2-jk)∈Vj{\ displaystyle \ forall (j, k) \ in \ mathbb {Z} ^ {2} \ quad f \ in V_ {j} \ iff f (\ cdot -2 ^ {- j} k) \ in V_ {j }}

- Der findes sådanne, der er en base af Riesz fra .θ∈V0{\ displaystyle \ theta \ i V_ {0}}
(θ(⋅-ikke)ikke∈Z){\ displaystyle \ left (\ theta (\ cdot -n) _ {n \ in \ mathbb {Z}} \ right)}
V0{\ displaystyle V_ {0}}
Reference
-
(in) Stéphane Mallat , " Multiresolution approximations and orthonormal wavelet bases of L 2 ( R ) " , Trans. Bitter. Matematik. Soc. , Vol. 315, nr . 1,1989, s. 69-87 ( DOI 10.2307 / 2001373 , læs online ).
Bibliografi
Yves Meyer , Wavelettes and operators , vol. Jeg, Hermann, 1990
<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">